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𝜏𝑚: motor torque

𝜏1: motor output torque

𝑏𝑚: motor damping

𝑛: gear ratio

𝜏2: gear output torque

𝐽𝑡: thigh inertia

𝐽𝑠: shank inertia

𝑚𝑡: thigh mass

𝑚𝑠: shank mass

𝜏ℎ:  human knee 

torque

𝑉: winding voltage

𝐿: winding inductance

𝑅: winding resistance

𝑖𝑚: motor current

𝐽𝑚: motor rotor inertia

𝜃𝑚: motor angle 

𝑘𝑐: stiffness of human-

exoskeleton interface

𝑏𝑐: damping of human-

exoskeleton interface

𝜏𝑒: exoskeleton output 

torque

𝜃𝑡: thigh angle

𝜃𝑠: shank angle

𝐹𝐺: ground reaction 

force
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Exoskeleton Model

• Conventional actuators typically needs torque sensors while series elastic 

actuators (SEA) can estimate output torque via the deflection of an elastic 

element, but both require torque sensing to ensure a stable and accurate 

performance.

• Torque sensors are heavy and expensive, and additional elastic components 

(like springs) adds size, mass, and complexity.

• The two popularized actuator paradigms often use exteroceptive sensory 

feedback that is known to cause non-collocated sensing problems upon 

collision, which results in human-robot-interaction instability.  

Hip and Knee Exoskeleton Schematic
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Quasi Direct Drive Actuator Parts

• Input: knee angles 𝜃𝑘,𝑟 , 𝜃𝑘,𝑙 and their difference

• Output: estimated knee torque

Discrete Control Continuous Control (Stiffness-inspired)
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Exoskeleton Mechatronics

Moment Estimation at Different Speeds

• Output torque estimation

• Conventional actuator and SEA : output torque cannot be estimated by current. 

• QDD with current-based torque estimation: it can be estimated well (10.1% error). 

• QDD with our torque estimation method: high fidelity torque estimation (5.3% error)

•  Our custom-designed motor has the highest torque density

Advantages of Our Exoskeleton

Motor Torque Density Comparison Knee Angle vs. Joint Moment Knee Angle vs. Gait Cycle
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• Collocated system: The sensor is placed at the 

location of the actuation (motor and sensor in 

the location) 

• Non-collocated system: The sensor is not 

placed at the location of the actuation (motor 

and sensor in different locations) 

Actuation

Actuation

Collocated Control of Quasi-Direct Drive Actuators 

Quasi Direct Drive Actuator (ours)

Quasi Direct Drive 

Actuator

Series Elastic Actuator

Conventional actuator 

• Enhanced gain margin: increase stiffness rendering from 400 to 900 Nm/rad at 2.0 Hz

• Intrinsic stability of actuation for walking and running

• The controller was able to adapt quickly and generate an accurate continuous knee 

moment by using the knee joint angle and not explicitly the estimated gait phase. 

• When the motor commutates or 

the angular acceleration is large, 

the output torque measured by the 

motor current has a large 

deviation from the real torque

Current-based torque estimation of SEA   

• The stiffness controller was able to adapt quickly and generate an accurate continuous 

knee moment by using the knee joint angle and not explicitly the estimated gait phase. 

Exoskeleton

[Huang2020]
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• SEA: 25% error

• QDD current-based estimation: 10% - 20. 8% error, with 1.96% - 4.02% phase delay 

• QDD our torque estimation: 4-5% error, without phase delay

Stability Enhancement by Our Collocated Control 

Our High-fidelity Torque Estimator

1.0 m/s Walking

2.0 m/s Running

Phase delay > 2.5% 

• Huge error 

• Increases Exo energetic 

penalty 

• Advantages of our estimation method
− No torque sensor: cost-effective and lightweight

− Simpler mechanical design, more compact

− High-fidelity torque estimation for versatile activities

Our Torque Estimation with Built-in Sensors
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Use the human-robot angle 

information in real-time

Estimate torque for 

activities with 

different frequency
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Our torque estimation method:
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